Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photosynth Res ; 160(1): 31-44, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38502255

RESUMO

Accumulation of carotenoid (Car) triplet states was investigated by singlet-triplet annihilation, measured as chlorophyll (Chl) fluorescence quenching in sunflower and lettuce leaves. The leaves were illuminated by Xe flashes of 4 µs length at half-height and 525-565 or 410-490 nm spectral band, maximum intensity 2 mol quanta m-2 s-1, flash photon dose up to 10 µmol m-2 or 4-10 PSII excitations. Superimposed upon the non-photochemically unquenched Fmd state, fluorescence was strongly quenched near the flash maximum (minimum yield Fe), but returned to the Fmd level after 30-50 µs. The fraction of PSII containing a 3Car in equilibrium with singlet excitation was calculated as Te = (Fmd-Fe)/Fmd. Light dependence of Te was a rectangular hyperbola, whose initial slope and plateau were determined by the quantum yields of triplet formation and annihilation and by the triplet lifetime. The intrinsic lifetime was 9 µs, but it was strongly shortened by the presence of O2. The triplet yield was 0.66 without nonphotochemical quenching (NPQ) but approached zero when NP-Quenched fluorescence approached 0.2 Fmd. The results show that in the Fmd state a light-adapted charge-separated PSIIL state is formed (Sipka et al., The Plant Cell 33:1286-1302, 2021) in which Pheo-P680+ radical pair formation is hindered, and excitation is terminated in the antenna by 3Car formation. The results confirm that there is no excitonic connectivity between PSII units. In the PSIIL state each PSII is individually turned into the NPQ state, where excess excitation is quenched in the antenna without 3Car formation.


Assuntos
Fótons , Complexo de Proteína do Fotossistema II , Carotenoides , Clorofila , Complexos de Proteínas Captadores de Luz
2.
Free Radic Biol Med ; 208: 1-12, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37506952

RESUMO

Heritable renal cancer syndromes (RCS) are associated with numerous chromosomal alterations including inactivating mutations in von Hippel-Lindau (VHL) gene. Here we identify a novel aspect of the phenotype in VHL-deficient human renal cells. We call it reductive stress as it is characterised by increased NADH/NAD+ ratio that is associated with impaired cellular respiration, impaired CAC activity, upregulation of reductive carboxylation of glutamine and accumulation of lipid droplets in VHL-deficient cells. Reductive stress was mitigated by glucose depletion and supplementation with pyruvate or resazurin, a redox-reactive agent. This study demonstrates for the first time that reductive stress is a part of the phenotype associated with VHL-deficiency in renal cells and indicates that the reversal of reductive stress can augment respiratory activity and CAC activity, suggesting a strategy for altering the metabolic profile of VHL-deficient tumours.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Neoplasias Renais/metabolismo , Carcinoma de Células Renais/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Glutamina/metabolismo , Regulação para Cima
3.
Int J Mol Sci ; 23(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36077504

RESUMO

Ischemia reperfusion injury is common in transplantation. Previous studies have shown that cooling can protect against hypoxic injury. To date, the protective effects of hypothermia have been largely associated with metabolic suppression. Since kidney transplantation is one of the most common organ transplant surgeries, we used human-derived renal proximal tubular cells (HKC8 cell line) as a model of normal renal cells. We performed a temperature titration curve from 37 °C to 22 °C and evaluated cellular respiration and molecular mechanisms that can counteract the build-up of reducing equivalents in hypoxic conditions. We show that the protective effects of hypothermia are likely to stem both from metabolic suppression (inhibitory component) and augmentation of stress tolerance (activating component), with the highest overlap between activating and suppressing mechanisms emerging in the window of mild hypothermia (32 °C). Hypothermia decreased hypoxia-induced rise in the extracellular lactate:pyruvate ratio, increased ATP/ADP ratio and mitochondrial content, normalized lipid content, and improved the recovery of respiration after anoxia. Importantly, it was observed that in contrast to mild hypothermia, moderate and deep hypothermia interfere with HIF1 (hypoxia inducible factor 1)-dependent HRE (hypoxia response element) induction in hypoxia. This work also demonstrates that hypothermia alleviates reductive stress, a conceptually novel and largely overlooked phenomenon at the root of ischemia reperfusion injury.


Assuntos
Hipotermia Induzida , Hipotermia , Traumatismo por Reperfusão , Temperatura Baixa , Humanos , Hipóxia
4.
Photosynth Res ; 154(2): 89-112, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36114436

RESUMO

Life-long efforts of the Tartu photosynthesis research group have been summarized. The measurements were facilitated by self-designed instruments, distinct in multifunctionality and fastresponse time. The black-box type kinetical analysis on intact leaves has revealed several physiologically significant features of leaf photosynthesis. Rubisco studies reflected competition for the active site between the substrates and products, linearizing in vivo kinetics compared with the low-Km in vitro responses. Rubisco Activase usually activates only a small part of the Rubisco, making the rest of it a storage protein. Precisely quantifying absorbed photons and the responding transmittance changes, electron flow rates through cytochrome b6f, plastocyanin and photosystem I were measured, revealing competition between the proton-uncoupled cyclic electron flow from PSI to Cyt b6f to P700+ and the proton-coupled linear flow from PSII to Cyt b6f to P700+. Analyzing responses of O2 evolution and Chl fluorescence to ms-length light pulses we concluded that explanation of the sigmoidal fluorescence induction by excitonic connectivity between PSII units is a misconception. Each PSII processes excitation from its own antenna, but the sigmoidicity is caused by rise of the fluorescence yield of the QA-reduced PSII units after their QB site becomes occupied by reduced plastoquinone (or diuron). Unlike respiration, photosynthetic electrons must prepare their acceptor by coupled synthesis of 3ATP/4e-. Feedback regulation of this ratio leads to oscillations under saturating light and CO2, when the rate is Pi-limited. The slow oscillations (period 60s) indicate that the magnitudes of the deflections in the 3ATP/4e- ratio, corrected by regulating cyclic and alternative electron flow (including the Mehler type O2 reduction), are only a fraction of a per cent. The Pi limitation causes slip in the ATP synthase, slightly increasing the basic 12H+/3ATP requirement.


Assuntos
Clorofila , Ribulose-Bifosfato Carboxilase , Clorofila/metabolismo , Transporte de Elétrons/fisiologia , Ribulose-Bifosfato Carboxilase/metabolismo , Prótons , Citocromos b/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Oxirredução , Luz
5.
Photosynth Res ; 145(3): 209-225, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32918663

RESUMO

Lettuce (Lactuca sativa) and benth (Nicotiana benthamiana) leaves were illuminated with 720 nm background light to mix S-states and oxidize electron carriers. Green-filtered xenon flashes of different photon dose were applied and O2 evolution induced by a flash was measured. After light intensity gradient across the leaf was mathematically considered, the flash-induced PSII electron transport (= 4·O2 evolution) exponentially increased with the flash photon dose in any differential layer of the leaf optical density. This proved the absence of excitonic connectivity between PSII units. Time courses of flash light intensity and 680 nm chlorophyll fluorescence emission were recorded. While with connected PSII the sigmoidal fluorescence rise has been explained by quenching of excitation in closed PSII by its open neighbors, in the absence of connectivity the sigmoidicity indicates gradual rise of the fluorescence yield of an individual closed PSII during the induction. Two phases were discerned: the specific fluorescence yield immediately increased from Fo to 1.8Fo in a PSII, whose reaction center became closed; fluorescence yield of the closed PSII was keeping time-dependent rise from 1.8Fo to about 3Fo, approaching the flash fluorescence yield Ff = 0.6Fm during 40 µs. The time-dependent fluorescence rise was resolved from the quenching by 3Car triplets and related to protein conformational change. We suggest that QA reduction induces a conformational change, which by energetic or structural means closes the gate for excitation entrance into the central radical pair trap-efficiently when QB cannot accept the electron, but less efficiently when it can.


Assuntos
/química , Complexo de Proteína do Fotossistema II , Folhas de Planta/química , Fluorescência , Luz , Oxigênio , Fatores de Tempo
6.
Photosynth Res ; 143(3): 335-346, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31960223

RESUMO

Chlorophyll fluorescence induction during 0.4 to 200 ms multiple-turnover pulses (MTP) was measured in parallel with O2 evolution induced by the MTP light. Additionally, a saturating single-turnover flash (STF) was applied at the end of each MTP and the total MTP +STF O2 evolution was measured. Quantum yield of O2 evolution during the MTP transients was calculated and related to the number of open PSII centers, found from the STF O2 evolution. Proportionality between the number of open PSII and their running photochemical activity showed the quantum yield of open PSII remained constant independent of the closure of adjacent centers. During the induction, total fluorescence was partitioned between Fo of all the open centers and Fc of all the closed centers. The fluorescence yield of a closed center was 0.55 of the final Fm while less than a half of the centers were closed, but later increased, approaching Fm to the end of the induction. In the framework of the antenna/radical pair equilibrium model, the collective rise of the fluorescence of centers closed earlier during the induction is explained by an electric field, facilitating return of excitation energy from the Pheo- P680+ radical pair to the antenna.


Assuntos
Processos Fotoquímicos , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Transporte de Elétrons , Fluorescência , Modelos Moleculares , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Fatores de Tempo
7.
Photosynth Res ; 136(1): 63-82, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28936722

RESUMO

The OJDIP rise in chlorophyll fluorescence during induction at different light intensities was mathematically modeled using 24 master equations describing electron transport through photosystem II (PSII) plus ordinary differential equations for electron budgets in plastoquinone, cytochrome f, plastocyanin, photosystem I, and ferredoxin. A novel feature of the model is consideration of electron in- and outflow budgets resulting in changes in redox states of Tyrosine Z, P680, and QA as sole bases for changes in fluorescence yield during the transient. Ad hoc contributions by transmembrane electric fields, protein conformational changes, or other putative quenching species were unnecessary to account for primary features of the phenomenon, except a peculiar slowdown of intra-PSII electron transport during induction at low light intensities. The lower than F m post-flash fluorescence yield F f was related to oxidized tyrosine Z. The transient J peak was associated with equal rates of electron arrival to and departure from QA and requires that electron transfer from QA- to QB be slower than that from QA- to QB-. Strong quenching by oxidized P680 caused the dip D. Reduced plastoquinone, a competitive product inhibitor of PSII, blocked electron transport proportionally with its concentration. Electron transport rate indicated by fluorescence quenching was faster than the rate indicated by O2 evolution, because oxidized donor side carriers quench fluorescence but do not transport electrons. The thermal phase of the fluorescence rise beyond the J phase was caused by a progressive increase in the fraction of PSII with reduced QA and reduced donor side.


Assuntos
Clorofila/metabolismo , Modelos Biológicos , Complexo de Proteína do Fotossistema II/metabolismo , Diurona , Transporte de Elétrons/efeitos da radiação , Fluorescência , Temperatura Alta , Cinética , Oxirredução , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Plastoquinona/metabolismo , Fatores de Tempo
8.
Biochim Biophys Acta ; 1857(6): 819-30, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27056771

RESUMO

Electrochromic shift measurements confirmed that the Q-cycle operated in sunflower leaves. The slow temporarily increasing post-pulse phase was recorded, when ATP synthase was inactivated in the dark and plastoquinol (PQH(2)) oxidation was initiated by a short pulse of far-red light (FRL). During illumination by red light, the Q-cycle-supported proton arrival at the lumen and departure via ATP synthase were simultaneous, precluding extreme build-up of the membrane potential. To investigate the kinetics of the Q-cycle, less than one PQH(2) per cytochrome b(6)f (Cyt b(6)f) were reduced by illuminating the leaf with strong light pulses or single-turnover Xe flashes. The post-pulse rate of oxidation of these PQH2 molecules was recorded via the rate of reduction of plastocyanin (PC(+)) and P700(+), monitored at 810 and 950 nm. The PSII-reduced PQH(2) molecules were oxidized with multi-phase overall kinetics, τ(d)=1, τ(p)=5.6 and τ(s)=16 ms (22 °C). We conclude that τ(d) characterizes PSII processes and diffusion, τ(p) is the bifurcated oxidation of the primary quinol and τ(s) is the Q-cycle-involving reduction of the secondary quinol at the n-site, its transport to the p-site, and bifurcated oxidation there. The extraordinary slow kinetics of the Q-cycle may be related to the still unsolved mechanism of the "photosynthetic control."


Assuntos
Complexo Citocromos b6f/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Plastocianina/metabolismo , Plastoquinona/análogos & derivados , Algoritmos , Clorofila/metabolismo , Citocromos f/metabolismo , Transporte de Elétrons , Helianthus/metabolismo , Helianthus/efeitos da radiação , Cinética , Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Biológicos , Oxirredução , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema I/metabolismo , Folhas de Planta/efeitos da radiação , Plastoquinona/metabolismo
9.
Biochim Biophys Acta ; 1847(6-7): 565-75, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25800682

RESUMO

In sunflower leaves linear electron flow LEF=4O2 evolution rate was measured at 20 ppm O2 in N2. PSII charge separation rate CSRII=aII∙PAD∙(Fm-F)/Fm, where aII is excitation partitioning to PSII, PAD is photon absorption density, Fm and F are maximum and actual fluorescence yields. Under 630 nm LED+720 nm far-red light (FRL), LEF was equal to CSRII with aII=0.51 to 0.58. After FRL was turned off, plastoquinol (PQH2) accumulated, but LEF decreased more than accountable by F increase, indicating PQH2-oxidizing cyclic electron flow in PSII (CEFII). CEFII was faster under conditions requiring more ATP, consistent with CEFII being coupled with proton translocation. We propose that PQH2 bound to the QC site is oxidized, one e- moving to P680+, the other e- to Cyt b559. From Cyt b559 the e- reduces QB- at the QB site, forming PQH2. About 10-15% electrons may cycle, causing misses in the period-4 flash O2 evolution and lower quantum yield of photosynthesis under stress. We also measured concentration dependence of PQH2 oxidation by dioxygen, as indicated by post-illumination decrease of Chl fluorescence yield. After light was turned off, F rapidly decreased from Fm to 0.2 Fv, but further decrease to F0 was slow and O2 concentration dependent. The rate constant of PQH2 oxidation, determined from this slow phase, was 0.054 s(-1) at 270 µM (21%) O2, decreasing with Km(O2) of 60 µM (4.6%) O2. This eliminates the interference of O2 in the measurements of CEFII.


Assuntos
Helianthus/metabolismo , Luz , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Plastoquinona/análogos & derivados , Trifosfato de Adenosina/metabolismo , Clorofila/química , Clorofila/metabolismo , Transporte de Elétrons , Elétrons , Fluorescência , Oxirredução , Fótons , Fotossíntese/fisiologia , Plastoquinona/química , Plastoquinona/metabolismo
10.
Photosynth Res ; 122(1): 41-56, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24817180

RESUMO

This work addresses the question of occurrence and function of photosystem II (PSII) in bundle sheath (BS) cells of leaves possessing NADP-malic enzyme-type C4 photosynthesis (Zea mays). Although no requirement for PSII activity in the BS has been established, several component proteins of PSII have been detected in BS cells of developing maize leaves exhibiting O2-insensitive photosynthesis. We used the basal fluorescence emissions of PSI (F 0I) and PSII (F 0II) as quantitative indicators of the respective relative photosystem densities. Chl fluorescence induction was measured simultaneously at 680 and 750 nm. In mature leaves, the F m(680)/F 0(680) ratio was 10.5 but less in immature leaves. We propose that the lower ratio was caused by the presence of a distinct non-variable component, F c, emitting at 680 and 750 nm. After F c was subtracted, the fluorescence of PSI (F 0I) was detected as a non-variable component at 750 nm and was undetectably low at 680 nm. Contents of Chls a and b were measured in addition to Chl fluorescence. The Chl b/(a + b) was relatively stable in developing sunflower leaves (0.25-0.26), but in maize it increased from 0.09 to 0.21 with leaf tissue age. In sunflower, the F 0I/(F 0I + F 0II) was 0.39 ± 0.01 independent of leaf age, but in maize, this parameter was 0.65 in young tissue of very low Chl content (20-50 mg m(-2)) falling to a stable level of 0.53 ± 0.01 at Chl contents >100 mg m(-2). The values of F 0I/(F 0I + F 0II) showed that in sunflower, excitation was partitioned between PSII and PSI in a ratio of 2:1, but the same ratio was 1:1 in the C4 plant. The latter is consistent with a PSII:PSI ratio of 2:1 in maize mesophyll cells and PSI only in BS cells (2:1:1 distribution). We suggest, moreover, that redox mediation of Chl synthesis, rather than protein accumulation, regulates photosystem assembly to ensure optimum excitation balance between functional PSII and PSI. Indeed, the apparent necessity for two Chls (a and b) may reside in their targeted functions in influencing accumulation of PSI and PSII, respectively, as opposed to their spectral differences.


Assuntos
Helianthus/fisiologia , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Zea mays/fisiologia , Clorofila/metabolismo , Transporte de Elétrons , Fluorescência , Helianthus/efeitos da radiação , Luz , Malato Desidrogenase/metabolismo , Células do Mesofilo , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/metabolismo , Feixe Vascular de Plantas/fisiologia , Feixe Vascular de Plantas/efeitos da radiação , Espectrometria de Fluorescência , Zea mays/efeitos da radiação
11.
Plant Cell Environ ; 37(3): 724-41, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24033429

RESUMO

In growing leaves, lack of isoprene synthase (IspS) is considered responsible for delayed isoprene emission, but competition for dimethylallyl diphosphate (DMADP), the substrate for both isoprene synthesis and prenyltransferase reactions in photosynthetic pigment and phytohormone synthesis, can also play a role. We used a kinetic approach based on post-illumination isoprene decay and modelling DMADP consumption to estimate in vivo kinetic characteristics of IspS and prenyltransferase reactions, and to determine the share of DMADP use by different processes through leaf development in Populus tremula. Pigment synthesis rate was also estimated from pigment accumulation data and distribution of DMADP use from isoprene emission changes due to alendronate, a selective inhibitor of prenyltransferases. Development of photosynthetic activity and pigment synthesis occurred with the greatest rate in 1- to 5-day-old leaves when isoprene emission was absent. Isoprene emission commenced on days 5 and 6 and increased simultaneously with slowing down of pigment synthesis. In vivo Michaelis-Menten constant (Km ) values obtained were 265 nmol m(-2) (20 µm) for DMADP-consuming prenyltransferase reactions and 2560 nmol m(-2) (190 µm) for IspS. Thus, despite decelerating pigment synthesis reactions in maturing leaves, isoprene emission in young leaves was limited by both IspS activity and competition for DMADP by prenyltransferase reactions.


Assuntos
Butadienos/metabolismo , Hemiterpenos/metabolismo , Pentanos/metabolismo , Pigmentos Biológicos/biossíntese , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Populus/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Alendronato/farmacologia , Biomassa , Dióxido de Carbono/metabolismo , Respiração Celular/efeitos dos fármacos , Simulação por Computador , Cinética , Compostos Organofosforados/metabolismo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos dos fármacos , Caules de Planta/anatomia & histologia , Caules de Planta/efeitos dos fármacos , Caules de Planta/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Populus/efeitos dos fármacos , Fatores de Tempo
12.
Biochim Biophys Acta ; 1837(2): 315-25, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24333386

RESUMO

The spectral global quantum yield (YII, electrons/photons absorbed) of photosystem II (PSII) was measured in sunflower leaves in State 1 using monochromatic light. The global quantum yield of PSI (YI) was measured using low-intensity monochromatic light flashes and the associated transmittance change at 810nm. The 810-nm signal change was calibrated based on the number of electrons generated by PSII during the flash (4·O2 evolution) which arrived at the PSI donor side after a delay of 2ms. The intrinsic quantum yield of PSI (yI, electrons per photon absorbed by PSI) was measured at 712nm, where photon absorption by PSII was small. The results were used to resolve the individual spectra of the excitation partitioning coefficients between PSI (aI) and PSII (aII) in leaves. For comparison, pigment-protein complexes for PSII and PSI were isolated, separated by sucrose density ultracentrifugation, and their optical density was measured. A good correlation was obtained for the spectral excitation partitioning coefficients measured by these different methods. The intrinsic yield of PSI was high (yI=0.88), but it absorbed only about 1/3 of quanta; consequently, about 2/3 of quanta were absorbed by PSII, but processed with the low intrinsic yield yII=0.63. In PSII, the quantum yield of charge separation was 0.89 as detected by variable fluorescence Fv/Fm, but 29% of separated charges recombined (Laisk A, Eichelmann H and Oja V, Photosynth. Res. 113, 145-155). At wavelengths less than 580nm about 30% of excitation is absorbed by pigments poorly connected to either photosystem, most likely carotenoids bound in pigment-protein complexes.


Assuntos
Helianthus/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Teoria Quântica , Transporte de Elétrons , Elétrons , Raios Infravermelhos , Oxigênio/metabolismo , Fótons , Análise Espectral , Fatores de Tempo
13.
Photosynth Res ; 117(1-3): 431-48, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24005848

RESUMO

Chl fluorescence induction (FI) was recorded in sunflower leaves pre-adapted to darkness or low preferentially PSI light, or inhibited by DCMU. For analysis the FI curves were plotted against the cumulative number of excitations quenched by PSII, n q, calculated as the cumulative complementary area above the FI curve. In the +DCMU leaves n q was <1 per PSII, suggesting pre-reduction of Q A during the dark pre-exposure. A strongly sigmoidal FI curve was constructed by complementing (shifting) the recorded FI curves to n q = 1 excitation per PSII. The full FI curve in +DCMU leaves was well fitted by a model assuming PSII antennae are excitonically connected in domains of four PSII. This result, obtained by gradually reducing Q A in PSII with pre-blocked Q B (by DCMU or PQH2), differs from that obtained by gradually blocking the Q B site (by increasing DCMU or PQH2 level) in leaves during (quasi)steady-state e(-) transport (Oja and Laisk, Photosynth Res 114, 15-28, 2012). Explanations are discussed. Donor side quenching was characterized by comparison of the total n q in one and the same dark-adapted leaf, which apparently increased with increasing PFD during FI. An explanation for the donor side quenching is proposed, based on electron transfer from excited P680* to oxidized tyrosine Z (TyrZ(ox)). At high PFDs the donor side quenching at the J inflection of FI is due mainly to photochemical quenching by TyrZ(ox). This quenching remains active for subsequent photons while TyrZ remains oxidized, following charge transfer to Q A. During further induction this quenching disappears as soon as PQ and Q A become reduced, charge separation becomes impossible and TyrZ is reduced by the water oxidizing complex.


Assuntos
Elétrons , Helianthus/metabolismo , Temperatura , Adaptação Fisiológica/efeitos dos fármacos , Escuridão , Diurona/farmacologia , Transporte de Elétrons/efeitos dos fármacos , Fluorescência , Helianthus/efeitos dos fármacos , Fótons , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo
14.
Photosynth Res ; 114(1): 15-28, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22890327

RESUMO

Oxygen evolution was measured in sunflower leaves in steady-state and during multiple-turnover pulses (MTP) of different light (630 nm LED plus far-red light) intensity and duration. In parallel, Chl fluorescence yields F(0) (minimum), F(s) (steady-state), and F(m) (pulse-saturated), as well as fluorescence induction during MTPs were recorded. Extra O(2) evolution was measured in response to a saturating single-turnover Xe flash (STF) applied immediately subsequently to the actinic light in the steady-state and to each MTP. Under the used anaerobic conditions and randomized S-states electron transport per STF was calculated as 4O(2) evolution. The STF-induced electron transport (=the number of open PSII) was maximal at the low background light, but decreased with progressing light saturation in steady-state and with the increasing duration of MTP. The quantum yield (effective antenna size) of open PSII centers remained constant when adjacent centers became closed. The photochemical quenching of fluorescence q(P) = (F(m) - F(s))/(F(m) - F(0)) was proportional with the portion of open PSII centers in the steady-state (variable non-photochemical quenching, NPQ) and with increasing MTP duration (NPQ absent). Comparison of experimental responses to a model based on PSII dimers with well-connected antennae showed no energetic connectivity between PSII antennae in intact leaves, suggesting that in vivo PSII exist as monomers, or dimers with energetically disconnected antennae.


Assuntos
Clorofila/metabolismo , Helianthus/efeitos da radiação , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Evolução Biológica , Transporte de Elétrons , Fluorescência , Helianthus/metabolismo , Luz , Oxirredução , Processos Fotoquímicos , Complexo de Proteína do Fotossistema II/efeitos da radiação , Folhas de Planta/metabolismo , Zircônio/química
15.
Photosynth Res ; 113(1-3): 145-55, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22644479

RESUMO

Oxygen evolution and Chl fluorescence induction were measured during multiple turnover light pulses (MTP) of 630-nm wavelength, intensities from 250 to 8,000 µmol quanta m(-2) s(-1) and duration from 0.3 to 200 ms in sunflower leaves at 22 °C. The ambient O(2) concentration was 10-30 ppm and MTP were applied after pre-illumination under far-red light (FRL), which oxidized plastoquinone (PQ) and randomized S-states because of the partial excitation of PSII. Electron (e ( - )) flow was calculated as 4·O(2) evolution. Illumination with MTP of increasing length resulted in increasing O(2) evolution per pulse, which was differentiated against pulse length to find the time course of O(2) evolution rate with sub-millisecond resolution. Comparison of the quantum yields, Y (IIO) = e ( - )/hν from O(2) evolution and Y (IIF) = (F (m) - F)/F (m) from Chl fluorescence, detected significant losses not accompanied by fluorescence emission. These quantum losses are discussed to be caused by charge recombination between Q (A) (-) and oxidized TyrZ at a rate of about 1,000 s(-1), either directly or via the donor side equilibrium complex Q(A) â†’ P (D1) (+)  â†” TyrZ(ox), or because of cycling facilitated by Cyt b (559). Predicted from the suggested mechanism, charge recombination is enhanced by damage to the water-oxidizing complex and by restricted PSII acceptor side oxidation. The rate of PSII charge recombination/cycling is fast enough for being important in photoprotection.


Assuntos
Clorofila/metabolismo , Fluorescência , Helianthus/metabolismo , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Absorção/efeitos da radiação , Transporte de Elétrons/efeitos da radiação , Cinética , Folhas de Planta/efeitos da radiação , Teoria Quântica , Fatores de Tempo
16.
Photosynth Res ; 110(2): 99-109, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22038184

RESUMO

Oxygen evolution per single-turnover flash (STF) or multiple-turnover pulse (MTP) was measured with a zirconium O(2) analyzer from sunflower leaves at 22 °C. STF were generated by Xe arc lamp, MTP by red LED light of up to 18000 µmol quanta m(-2) s(-1). Ambient O(2) concentration was 10-30 ppm, STF and MTP were superimposed on far-red background light in order to oxidize plastoquinone (PQ) and randomize S-states. Electron (e(-)) flow was calculated as 4 times O(2) evolution. Q (A) → Q (B) electron transport was investigated firing double STF with a delay of 0 to 2 ms between the two. Total O(2) evolution per two flashes equaled to that from a single flash when the delay was zero and doubled when the delay exceeded 2 ms. This trend was fitted with two exponentials with time constants of 0.25 and 0.95 ms, equal amplitudes. Illumination with MTP of increasing length resulted in increasing O(2) evolution per pulse, which was differentiated with an aim to find the time course of O(2) evolution with sub-millisecond resolution. At the highest pulse intensity of 2.9 photons ms(-1) per PSII, 3 e(-) initially accumulated inside PSII and the catalytic rate of PQ reduction was determined from the throughput rate of the fourth and fifth e(-). A light response curve for the reduction of completely oxidized PQ was a rectangular hyperbola with the initial slope of 1.2 PSII quanta per e(-) and V (m) of 0.6 e(-) ms(-1) per PSII. When PQ was gradually reduced during longer MTP, V (m) decreased proportionally with the fraction of oxidized PQ. It is suggested that the linear kinetics with respect to PQ are apparent, caused by strong product inhibition due to about equal binding constants of PQ and PQH(2) to the Q (B) site. The strong product inhibition is an appropriate mechanism for down-regulation of PSII electron transport in accordance with rate of PQH(2) oxidation by cytochrome b(6)f.


Assuntos
Helianthus/efeitos da radiação , Luz , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/efeitos da radiação , Sítios de Ligação , Complexo Citocromos b6f/metabolismo , Transporte de Elétrons , Helianthus/metabolismo , Cinética , Oxirredução , Fotossíntese , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Plastoquinona/metabolismo , Fatores de Tempo
17.
Photosynth Res ; 110(2): 73-88, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22002818

RESUMO

This report describes a new method to measure the chloroplastic lumenal proton pool in leaves (tobacco and sunflower). The method is based on measurement of CO(2) outbursts from leaves caused by the shift in the CO(2) + H(2)O ↔ HCO(3)(-) + H(+) equilibrium in the chloroplast stroma as protons return from the lumen after darkening. Protons did not accumulate in the lumen to a significant extent when photosynthesis was light-limited, but a large pool of >100 µmol H(+) m(-2) accumulated in the lumen as photosynthesis became light-saturated. During thylakoid energization in the light, large amounts of protons are moved from binding sites in the stroma to binding sites in the lumen. The transthylakoidal difference in the chemical potential of free protons (ΔpH) is largely based on the difference in the chemical potential of bound protons in the lumenal and stromal compartments (pK). Over the course of the dark-light induction of photosynthesis protons accumulate in the lumen during reduction of 3-phosphoglycerate. The accumulation of electrons in reduced compounds of the stroma and cytosol is the natural cause for accumulation of a stoichiometric pool of lumenal protons during this transient event.


Assuntos
Cloroplastos/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Prótons , Resinas Acrílicas , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Transporte Biológico , Dióxido de Carbono/metabolismo , Escuridão , Ácidos Glicéricos/metabolismo , Helianthus/metabolismo , Luz , Potenciais da Membrana , Processos Fotoquímicos , Ribulosefosfatos/metabolismo , Análise Espectral/métodos , Coloração e Rotulagem , /metabolismo
18.
Plant Physiol ; 156(2): 816-31, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21502186

RESUMO

After darkening, isoprene emission continues for 20 to 30 min following biphasic kinetics. The initial dark release of isoprene (postillumination emission), for 200 to 300 s, occurs mainly at the expense of its immediate substrate, dimethylallyldiphosphate (DMADP), but the origin and controls of the secondary burst of isoprene release (dark-induced emission) between approximately 300 and 1,500 s, are not entirely understood. We used a fast-response gas-exchange system to characterize the controls of dark-induced isoprene emission by light, temperature, and CO(2) and oxygen concentrations preceding leaf darkening and the effects of short light pulses and changing gas concentrations during dark-induced isoprene release in hybrid aspen (Populus tremula × Populus tremuloides). The effect of the 2-C-methyl-D-erythritol-4-phosphate pathway inhibitor fosmidomycin was also investigated. The integral of postillumination isoprene release was considered to constitute the DMADP pool size, while the integral of dark-induced emission was defined as the "dark" pool. Overall, the steady-state emission rate in light and the maximum dark-induced emission rate responded similarly to variations in preceding environmental drivers and atmospheric composition, increasing with increasing light, having maxima at approximately 40 °C and close to the CO(2) compensation point, and were suppressed by lack of oxygen. The DMADP and dark pool sizes were also similar through their environmental dependencies, except for high temperatures, where the dark pool significantly exceeded the DMADP pool. Isoprene release could be enhanced by short lightflecks early during dark-induced isoprene release, but not at later stages. Fosmidomycin strongly suppressed both the isoprene emission rates in light and in the dark, but the dark pool was only moderately affected. These results demonstrate a strong correspondence between the steady-state isoprene emission in light and the dark-induced emission and suggest that the dark pool reflects the total pool size of 2-C-methyl-d-erythritol-4-phosphate pathway metabolites upstream of DMADP. These metabolites are converted to isoprene as soon as ATP and NADPH become available, likely by dark activation of chloroplastic glycolysis and chlororespiration.


Assuntos
Butadienos/análise , Escuridão , Meio Ambiente , Hemiterpenos/análise , Pentanos/análise , Folhas de Planta/fisiologia , Populus/fisiologia , Dióxido de Carbono/farmacologia , Fosfomicina/análogos & derivados , Fosfomicina/farmacologia , Cinética , Modelos Biológicos , Oxigênio/farmacologia , Folhas de Planta/efeitos dos fármacos , Populus/efeitos dos fármacos , Temperatura , Fatores de Tempo
19.
Plant Physiol ; 154(3): 1558-70, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20837700

RESUMO

The responses of isoprene emission rate to temperature are characterized by complex time-dependent behaviors that are currently not entirely understood. To gain insight into the temperature dependencies of isoprene emission, we studied steady-state and transient responses of isoprene emission from hybrid aspen (Populus tremula × Populus tremuloides) leaves using a fast-response gas-exchange system coupled to a proton-transfer reaction mass spectrometer. A method based on postillumination isoprene release after rapid temperature transients was developed to determine the rate constant of isoprene synthase (IspS), the pool size of its substrate dimethylallyldiphosphate (DMADP), and to separate the component processes of the temperature dependence of isoprene emission. Temperature transients indicated that over the temperature range 25°C to 45°C, IspS was thermally stable and operated in the linear range of its substrate DMADP concentration. The in vivo rate constant of IspS obeyed the Arrhenius law, with an activation energy of 42.8 kJ mol(-1). In contrast, steady-state isoprene emission had a significantly lower temperature optimum than IspS and higher activation energy. The reversible temperature-dependent decrease in the rate of isoprene emission between 35°C and 44°C was caused by decreases in DMADP concentration, possibly reflecting reduced pools of energetic metabolites generated in photosynthesis, particularly of ATP. Strong control of isoprene temperature responses by the DMADP pool implies that transient temperature responses under fluctuating conditions in the field are driven by initial DMADP pool size as well as temperature-dependent modifications in DMADP pool size during temperature transients. These results have important implications for the development of process-based models of isoprene emission.


Assuntos
Alquil e Aril Transferases/metabolismo , Butadienos/metabolismo , Hemiterpenos/metabolismo , Pentanos/metabolismo , Populus/metabolismo , Temperatura , Regulação da Expressão Gênica de Plantas , Cinética , Fotossíntese , Populus/enzimologia
20.
Photosynth Res ; 103(3): 153-66, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20130995

RESUMO

Oxidation of photosystem I (PSI) donors under far-red light (FRL), slow re-reduction by stromal reductants and fast re-reduction in the dark subsequent to illumination by white light (WL) were recorded in leaves of several C(3) plants at 810 and 950 nm. During the re-reduction from stromal reductants the mutual interdependence of the two signals followed the theoretical relationship calculated assuming redox equilibrium between plastocyanin (PC) and P700, with the equilibrium constant of 40 +/- 10 (Delta E (m) = 86-99 mV) in most of the measured 24 leaves of nine plant species. The presence of non-oxidizable PC of up to 13% of the whole pool, indicating partial control of electron transport by PC diffusion, was transiently detected during a saturation pulse of white light superimposed on FRL or on low WL. Nevertheless, non-oxidizable PC was absent in the steady state during fast light-saturated photosynthesis. It is concluded that in leaves during steady state photosynthesis the electron transport rate is not critically limited by PC diffusion, but the high-potential electron carriers PC and P700 remain close to the redox equilibrium.


Assuntos
Elétrons , Helianthus/fisiologia , Helianthus/efeitos da radiação , Luz , Complexo de Proteína do Fotossistema I/metabolismo , Dióxido de Carbono/metabolismo , Transporte de Elétrons/efeitos da radiação , Ferredoxinas/metabolismo , Oxirredução/efeitos da radiação , Fotossíntese/efeitos da radiação , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Plastocianina/metabolismo , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...